
How do Developers Use Parallel Libraries?
Semih Okur, Danny Dig

Methodology

Interesting Facts

Motivation
We are living in the multicore age Parallel programming is hard A huge community can benefit

Q1: Are developers embracing multi-threading?
Q2: How quickly do developers start using new parallel libraries?
Q3: Which parallel constructs do developers use most often?
Q4: How do developers protect accesses to shared variables?
Q5: Which parallel patterns do developers embrace?
Q6: Which advanced features do developers use?
Q7: Do developers make the parallel code unnecessarily complex?
Q8: Are there constructs that developers commonly misuse?

Yet, we know little
about how
practitioners use
these libraries in
practice

• Researchers
• Library developers
• Instructors
• Developers

TPL,Threading,PLINQ

java.util.concurrent

TBB, OpenMP

Developers make their parallel code unnecessarily complex10% of their “parallel” code runs sequentially!! Parallel library usage follows a power-law distribution

For more: LearnParallelism.NET

Cool Statistics

Parallel.Invoke(() => i.ImportGPX(null, GPXFile));

foreach (var module in Modules.AsParallel())
 module.Refresh();

Collector
downloads C# apps having a
commit after April 2010

20132 apps

 Filtering
•Apps have <1000 SLOC
•Incompilable apps
•Apps do not use at least
one parallel library:
Threading, TPL, PLINQ

• 655 apps
• 17.6M SLOC
• 1609 developers

Analyzer • Implemented a specific analysis for
each question

• Used Microsoft Roslyn APIs
• Q2 .. Q8 analyze 655 apps
• Only Q1 analyzes all 7778 apps
• Both syntactic and semantic analysis
• Detected the usage of parallel

constructs (138 classes, 1651
methods) at 100% accuracy

2855 multithreading apps
out of 7778 C# apps (37%)

55 out of 189 cases could have used
Parallel.For or Parallel.ForEach
instead of regular for loop parallelism

var runDaemons = new Task (RunDaemonJobs, ..token);
….
var runScheduledJobs = new Task (RunScheduledJobs, ..token);
var tasks = new[] {runDaemons, ..., runScheduledJobs};
Array.ForEach(tasks, x => x.Start());
Task.WaitAll(tasks);

Parallel.Invoke(new ParallelOptions(CancellationToken =..token),
RunDaemonJobs , ..., RunScheduledJobs);

for(int i=1; i<=threadCount; i++) {
 var copy= I;
 var taskHandle= Task.Factory.StartNew(()=>
 DoInefficientInsert(server.Database.
 Configuration.ServerUrl, copy);
 tasks.Add(taskHandle); }
Task.WaitAll(tasks);

Parallel.For(1, threadCount, (i)=> DoInefficientInsert(
 server,Database.Configuration.ServerUrl, i));

63 out of 268 cases could have used
Parallel.Invoke instead of regular
fork/join task parallelism

Parallel.Invoke executes in parallel the actions passed as arguments. We
found 11% of all usages of this take one action parameter in different apps.
Developers believe that ImportGPX will execute in parallel.

Any method called on the object that AsParallel() returns will execute in parallel.
We found that 12% of all AsParallel are used as the iteration source of a
sequential loop. Developers again believe that the code will run in parallel

10% of the parallel API
methods are responsible
for 90% of all usages

•Beginners can focus on
learning a relatively small
subset of the library APIs and
still be able to master a large
number of parallelism
scenarios

The purpose of multi-threading
74% for concurrency
39% for parallelism

Adoption of parallelism libraries

Small Apps Large Apps Small Apps Large Apps

Average number of constructs per application

• More applications are becoming parallel • Each application is becoming more parallel

The small apps are the early adopters of new libraries. Larger ones are late adopters.
Usage of Parallel

Patterns
Usage of

Synchronization Types

0
1
2
3
4
5
6

Av
g

N
um

 C
on

st
ru

ct
s

(a)

0
1
2
3
4
5
6
7
8

(c)

0
10
20
30
40
50
60

(c)

Thursday, July 12, 12

